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INTRODUCTION TO HEAT TRANSFER

What is Heat Transfer?
Energy In transit due to a temperature difference.

How iIs heat transferred?

Conduction through a solid or a stationary fluid

Convection from a surface to a moving fluid (or vice versa)
Net radiation heat exchange between two or more surfaces.




INTRODUCTION TO HEAT TRANSFER
or a stationary fluid to a moving fluid between two surfaces

- Surface, T,

Our focus



CONDUCTION

Physical Origins and Rate Equations

« Transfer of energy from more energetic
particles of a substance to adjacent less

energetic ones as a result if interactions Hot Cold
between the particles medium medium

« No net motion of material (only diffusion 0
of energy)

« Can occur in solids, stationary liquids and
gases

e Three-dimensional in nature Cold Hot
medium medium

Source: Cengel et al. 2010
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GEOTHERMAL CYCLES

25-100°C direct use >100°C Electricity
-District heating
-Industries

RE-INJECTION PRODUCTION

WELL
WELL
SUSTAINABLE 2-5 km

Geothermal Reservoir

HOT ROCK

Source: arcticgreencorp.com
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MECHANISMS OF HEAT CONDUCTION

In a solid, the flow of heat by conduction is the result of the
transfer of vibrational energy from one molecule to another.

In fluids: it occurs in additional as a result of the transfer of
Kinetic enerqy.

Heat transfer by conduction may also arise from the
movement of free electrons, a process which is particularly
iImportant with metals and accounts for their high thermal
conductivities.

It is need a medium to transfer, and moves from high region
to low region
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STEADY AND TRANSIENT HEAT TRANSFER

« Steady (steady-state): no change with time at any point within the
medium

Source: Cengel et al. 2010

« Transient(unsteady): implies variation with timeor time dependence.

Time = 2 pMm Time =5 pMm

7°C  12°C
/ \,




MULTIDIMENSIONAL HEAT TRANSFER

Heat transfer problems are classified as being one-dimensional,
two-dimensional,or three-dimensional (depending on the relative
magnitudes and the level of accuracy). In the most general case,
heat transfer through a medium is three-dimensional.

The temperature distribution throughout the medium:
Cartesian Coordinates T(x,y,z)
Cylindrical Coordinates T(r,®, z)
Spherical Coordinates T(r,¢,0)




HEAT TRANSFER RATE OF CONDUCTION

Fourier’s Law

The rate of heat conduction through a
medium (for example in the x- d
direction) is proportional to the ~ slopea<0
temperature difference across the
medium and the area normal to the
direction.

T(x)

dT

Qcond = —kA—

dx 0>0

where

k is thermal conductivityof the material

% Is the temperature gradient

Heat flow

Source: Cengel et al. 2010
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The heat flux vector at a point P on this surface must be perpendicular to
the surface, and it must point in the direction of decreasing temperature.

The rate of heat conduction at that point can be
expressed by Fourier’s law as:

oT
On = —kAZ w)
In rectangular coordinates:
Qn = Qxi‘l' Qyj+ sz
It can be determined from Fourier’s law as:

. oT oT . oT
Qx = —kAx a, Qy = —kAy @, and Qx = —kAZa—Z

Source: Cengel et al. 2010
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HEAT GENERATION

Heat Generation: A medium through which heat is conducted may
involve the conversion of electrical, nuclear, or chemical energy
into heat (or thermal) energy

The rate of heat generation in a medium may
vary with time as well as position within the Solar

radiation

medium. The total rate of heat generation in a
medium of volume V can be determined from:

G=[gdvV (W)

Source: Cengel et al. 2010




1-D HEAT CONDUCTION EQUATION

Heat conduction in can be approximated as being
one-dimensional since heat conduction through
these geometries will be dominant in one direction
and negligible in other directions.

Heat Conduction Equation in a Large Plane Wall

An energy balance on this thin element during a
small time interval AT be expressed as:

. . . AE,, ¢
Qx — Qx+ax T Getement = %

Source: Cengel et al. 2010
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1-D HEAT CONDUCTION EQUATION

The one-dimensional transient heat conduction equation in a plane wall:

: o 0 oT : oT

Variable conductivity: a(k E) +g = 'DCE

The thermal conductivity k of a material depends on the temperature, and
thus it cannot be taken out of the derivative. However, the thermal
conductivity in most practical applications can be assumed to remain
constantat some average value. The equation above in that case reduces to:
o' g _ 10t

Constant conductivity: 22 "k a0t

Where « is the thermal diffusivity, a = p—"c

2
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1-D HEAT CONDUCTION EQUATION

For the following forms under specified conditions for a Large Plane Wall :

d’T g
1. Steady-state (— 0) ) + ==0
: : 92T 0
2. Transient, no heat generation (g = 0): — % = %a_i
: 0 : d2T
3. Steady-state, no heat generation (5 =0and g = O): e 0

DSOS




1-D HEAT CONDUCTION EQUATION

Heat Conduction Equation in a Long Cvylinder

Consider a thin cylindrical shell element of thickness Ar in a long cylinder.
Assume the density of the cylinder is p, the
specific heat is C, and the length is L.

The one-dimensional transient heat conduction
equation in a a cylinder:

: L 1 0 oT . oT
Variable conductivity: = = (rk a—r) +g9 = pCE
The equation above in that case reduces to:

L 10 oT 10T
Constant conductivity: ~ar ( ar) + = =3

DBOCOS [+t




1-D HEAT CONDUCTION EQUATION

For the following forms under specified conditions for a Cylinder:

9 _0): 1d(.dry g _
1. Steady-state (5 =0): — (r dr) +2=0
: : d( o G,
2. Transient, no heat generation (g = 0): %E(r a_:) = %a—:
: d ( d
3. Steady-state, no heat generation : E(rd—:) =0

(5 =0andg=0)

2)E3C D2OSO0S




1-D HEAT CONDUCTION EQUATION

Heat Conduction Equation in a Sphere
Consider a sphere with density p, specific heat ¢, and outer radius R.

The one-dimensional transient heat conduction
equation in a sphere:

. . 1 0 y) aT) o oT
Variable conductivity:  —— (T k )t 9 = pC o
The equation above in that case reduces to:
P | d 2 GT) g 10T
/ Constant conductivity: 25, (T o7 + =

, y
T Volume

s
" element

Source: Cengel et al. 2010
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1-D HEAT CONDUCTION EQUATION

For the following forms under specified conditions for a Sphere :

- 9-0): 14 zd_T) g _
1. Steady-state (at = 0). —— (r —)+7=0

- ion (4 = 0): 10 (y200) _ 101
2. Transient, no heat generation (g = 0): i (r ) T

: d dT
3. Steady-state, no heat generation : ;(rz 5) =0, or
] _ asT ar
(E—Oandg—O) rdr2+2dr_0

AN )




GENERAL HEAT CONDUCTION EQUATION

' ' : 0%T  0%T . 0°T ., g 10T
From Fourier-Biot equation (6x2 + 32 Tzt = 2 at)’ we can

determine general heat conduction equation for differept cases:

1. Rectangular Coordinates
2 2 2 2
0T . 0°T , 0°T % 0

a. Steady-state (Poisson equation) : — + a7z T 922
J0%T 0T  9%T _ 10T

b. Transient, no heat generation Yoyt o = 2
(diffusion equation) :
62 T 62 T 62’[' Source: Cengel et al. 2010
c. Steady-state, no heat generation :—— + 32 a2 = 0

(Laplace equation)

D002 [




GENERAL HEAT CONDUCTION EQUATION

2. Cylindrical Coordinates

Using the following relations between the coordinates of a point in
rectangular and cylindrical coordinate systems:

x =rcos@, y=rsin@d, and z =z

The general heat conduction equation in cylindrical
coordinates

77 (b 55) #5355 (7 g5) + 55 (e 5z) £ 4 = pC

Source: Cengel et al. 2010
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GENERAL HEAT CONDUCTION EQUATION

3. Spherical Coordinates

Using the following relations between the coordinates of a point iIn
rectangular and spherical coordinate systems:

x =1 cosQ sinf, y=rsin@sind, and z = r cosf

The general heat conduction equation in spherical
coordinates

L (2 ) 4 L0 (1) L9 (esing 2T 4 g = pc 2
r2 ar(kr or +r25in2<z)a<z) ka(z) +r25in969 ksmeae tg=pC

Source: Cengel et al. 2010
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BOUNDARY AND INITIAL CONDITIONS
OF CONVECTION

Specified Temperature Boundary

1. Specified Temperature Boundary Condition
T(O, t) — Tl
T(L,t) =T,

70, 1) = 150°C

TL, n=70°C
Source: Cengel et al. 2010

2. Specified Heat Flux Boundary Condition
) (W/m?)

Specified Heat Flux Boundary

oT _ ( Heat flux in the

dx  \positive x — direction

e: Cengel etal. 2010
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Insulated Boundary

Special Case: Insulated Boundary

C =0 or 220D
0x

"

_ 0 Insulation

Source: Cengel et al. 2010

Another Special Case: Thermal Symmetry
TG )
ox -

Thermal Symmetry

0

— Temperature
distribution
(symmetric
about center
plane)

2
JT(LI2, 1) _
ox -

Source: Cengel et al. 2010
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3. Convection Boundary Condition Convection boundary conditions

= hl [Tool - T(O’ t)] Convection | Conduction

[T, - T(0, B) =—ka—r‘£+"-

7, BT(O t)

and
_k aT(L t)

= ha|T (L, t) — Toog]

Source: Cengel et al. 2010

Radiation boundary conditions

4. Radiation Boundary Condition

Radiation | Conduction

oT (O t)
k [TSUTT 1 T(O’ t)4] Elo- lTE.:ll‘L I_T(o‘ f)“]:—k%
£
an d Tsurr, 1
Conduction | Radiation
OT(LY) _ 4
—k ax 20[T (L, 6)* — surr 2] KD g oL, - T, ]

0 +—+—‘ ~

Source: Cengel et al. 2010
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5. Interface Boundary Conditions
TA (XO, t) = TA (xo, t)

And

aTA(xO,t) _
_kA 0x _

_kB

aT'B (x(),t)
dx

6. Generalized Boundary Conditions

Heat transfer
to the surface
in all modes

Heat transfer
= | from the surface
in all modes

The interface of two bodies in perfect contact

Interface

Material [~ Material
B

T, (x5 1) = Ty(xp. 1)

L L,

A dx

Source: Cengel et al. 2010

ARGEO
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HEAT GENERATION IN A SOLID

A solid medium of surface area A; , volume I, and
constant thermal conductivity k, where heat is
generated at a constant rate of g per unit volume.
Heat is transferred from the solid to the surrounding
medium at T , with a constant heat transfer
coefficient of h. All the surfaces of the solid are
maintained at a common temperature T.

( Heat generation

A - .
h E_ =gV

en
b P

Source: Cengel et al. 2010

Under steady conditions, the energy balance for this solid can be expressed as:

Q =gV =hA;(Ts — T)
The surface temperature T; gives:

gV

T, = T +

hA,

2 C
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VARIABLE THERMAL CONDUCTIVITY, k(T)

=
—
=
g
=
E
=
=
=
o
(]
<
==
o

When the variation of thermal conductivity with
temperature k(T) is known, the average value of
the thermal conductivity in the temperature range
between T; and T, can be determined from:

2 k(T)dT
kave — .
I, - Ty

@2.GEO
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EXAMPLE

Heat Loss through a Steam Pipe

Consider a steam pipe of length L =20m, inner
radius r, =6cm , outer radius r =8cm , and
thermal conductivity k=20W /m.°C . The inner
and outer surfaces of the pipe are maintained at
average temperatures of T; = 150°C and T; = 60°C,
respectively. Obtain a general relation for the
temperature distribution inside the pipe under
steady conditions, and determine the rate of heat
loss from the steam through the pipe.

2

Source: Cengel et al. 2010
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Assumptions : 1. Steady, 2. One-dimensional, 3. Thermal conductivity is
constant, 4. No heat generation.

Properties : The thermal conductivity is given to be k =20W/m.°C .
Analysis :

The mathematical formulation of this problem: %(ri—:) =0

Boundary conditions: T(r;) =T; = 150°C and T(r,) = T, = 60°C

Integrating the differential equation once with respect to r gives:

dT dT C
r—= Cl = — ==
dar dar r

Again integrating with respect to r:
T(r)=CiInr +C,
We now apply both boundary conditions
T(ry) =Ty ——> C/lnrn+C =T
Try) =T, —— Clnr,+C, =T,

2EC D200 [T




Analysis :
There are two equations in two unknowns, (;and C, . Solving them
simultaneously gives

T,—T- T,—T-
Cl_ 2 1 and C2=T1—gln7‘1

in(72) in(72)
The variation of temperature within the pipe is determined to be
T(T) = Cl Inr + C2

(T, =T+ T

2)6C ® @@@@ ﬁ’iﬁﬁo




Analysis :

The rate of heat loss from the steam is simply the total rate of heat
conduction through the pipe, and is determined from Fourier’s law to be

c daT
Qcylinder = _kAE
= —k(2nrlL) 71
T, —T, (150 — 60)°C
= 2mkL = 2n(20 W/m .°C)(20 m)

l (0.08)

n\0.06
Q = 786 kW

Discussion : The total rate of heat transfer through a pipe is constant,

but the heat flux is not since it decreases in the direction of heat transfer

with increasing radius since ¢ = Q/(2nrlL).

N i
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Steady Heat Conduction

1. Steady Heat Conduction in Plane Walls
The energy balance for the wall can be expressed as:

(Rate of heat transfer) _ (Rate of heat transfer) _ ( Rate of change of )
into the wall out of the wall ~ \the energy of the wall

. . dE ll
Qin — Qout = C‘{l,lca

for steady operation %= 0. Then the rate of heat transfer
through the wall must be constant, Qcond,wazz = constant.

c daT T, —T:

Qcond,wall = _kAE = kA% (W)

If Ry.u IS thermal resistance of the wall against heat
conduction or simply the conduction resistance of the wall

L
Ryan = A (°C/W)

Source: Cengel et al. 2010




The rate of heat transfer through the wall can be described as:
-1

Qcond,wall =

Rwau
 Analogy to Electrical Current Flow:

Heat Transfer Electrical current flow
Rate of heat transfer <™ Electric current
Thermal resistance < > Electrical resistance
Temperature difference +— Voltage difference

22020002 [T
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THERMAL RESISTANCE

Total thermal resistance:
Rtotal — Rconv,l +R;+R,+ Rconv,z

For a unit area, overall heat transfer
coefficient U is the inverse of the total
thermal resistance:

UA =

Rtotal

Newton’s law of cooling:
Q = UAAT

Source: Cengel et al. 2010

DSOCOS [




THERMAL CONTACT CONDUCTANCE

Thermal contact conductance of some metal surfaces in air (from various sources)

Surface Rough- Tempera- Pressure,
Material Condition ness, pm ture, °C MPa

Identical Metal Pairs

416 Stainless steel Ground 2.54 90-200 0.3-2.5
304 Stainless steel Ground 1.14 20 4-7
Aluminum Ground 2.54 150 1.2-2.5
Copper Ground 1.27 20 1.2-20
Copper Milled 3.81 20 1-5
Copper (vacuum) Milled 0.25 30 0.7-7

Dissimilar Metal Pairs
Stainless steel- 10
Aluminum 20

Stainless steel- 10
Aluminum 20

Steel Ct-30- 10
Aluminum Ground 15-35
Steel Ct-30- 10
Aluminum Milled 30
5
Aluminum-Copper Ground 15
10
Aluminum-Copper Milled 20-35

*Divide the given values by 5.678 to convert to Btu/h - ft2 - *F.
Source: Cengel et al. 2010
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HEAT CONDUCTION IN CYLINDERS

Fourier’s law of heat conduction for heat transfer

through the cylindrical layer can be expressed as:
: dT
Qcond,cyl = _kAE

. T, -T-
Qcond,cyl = —= (W)

Rcyl

Thermal resistance of the cylindrical layer:

: : Heat is lost from a hot water pipe t
In(7,/1) In(Outer radius/Inner radius) cdv 15 OSt Hrom @ flof wale? Pipe 10

= — the air outside in the radial direction,
= 2mLk 27 (Length) (Thermal conductivity) and thus heat transfer from a long
pipe is one-dimensional.

Source: Cengel et al. 2010

2
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HEAT CONDUCTION IN SPHERES

Fourier’'s law of heat conduction for heat transfer

through spherical layer can be expressed as:
: dT
Qcond,sph = _kAE

2 T, —T-:
Qcond,sph == W)

Rsph

Thermal resistance of the cylindrical layer:

R —__"n™n A long cylindrical pipe (or spherical
Sph ATtk shell) with specified inner and outer

surface temperatures 7, and 7.

In(Outer radius/Inner radius)

- 4m(Outer radius)(Inner radius)(Thermal conductivity)

Source: Cengel et al. 2010
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THERMAL RESISTANCE

Now consider steady one-dimensional heat flow
through a cylindrical or spherical layer.

The rate of heat transfer under steady conditions

can be expressed as

Rtotal

For a cylindrical layer:
| In(ry/7my) 1

Repral = 4
total = e R, | 2mbk | (L),

Rmml = Rcan\',l + Rc_vl * Rc:nm-'_l
For a cylindrical layer: The thermal resistance network
R _ 1 n n—n N 1 for a cylindrical (or spherical)
fotat (4nr?)hy  Amrnrk - (4mrf)h, shell subjected to convection from
both the inner and the outer sides.

Source: Cengel et al. 2010
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2




CRITICAL RADIUS OF INSULATION

The pipe is insulated with a material whose thermal
conductivity is k and outer radius is r,. Heat is lost from
the pipe to the surrounding medium at temperature T,
with a convection heat transfer coefficient h. The rate of
heat transfer:
0 = T1—To T —T
Rins + Reony  In(12/11) n 1

2Lk h(2ntry L)
At which Q reaches a maximum is determined from

the requirement that dQ/dr, = 0 (zero slope). Now we can
get critical radius of insulation by the differentiation

: k
and solving for v, —— 7¢r cytinger = P

2Kk
It can be repeated for a sphere, we get 1 sppere = -

2

D002 [
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\
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An insulated cylindrical pipe
exposed to convection from the outer
surface and the thermal resistance
network associated with it.




HEAT TRANSFER IN
COMMON CONFIGURATIONS

The steady rate of heat transfer between these two surfaces is expressed as:
Q = Sk(T,—T,) , where S is conduction shape factor

Conduction shape factors S for several configurations for use in Q@ = kS(T; — T) to determine the steady rate of heat
transfer through a medium of thermal conductivity k between the surfaces at temperatures T, and T,

(1) Isothermal cylinder of length L (2) Vertical isothermal cylinder of length L
buried in a semi-infinite medium buried in a semi-infinite medium
(L>>Dand z >1.50) (L==D)

(3) Two parallel isothermal cylinders . (4) A row of equally spaced parallel isothermal
placed in an infinite medium - cylinders buried in a semi-infinite medium
(L>=Dy, Dy, 1) . " AT (L>>D, z and w >1.5D)




Conduction shape factor:

(5) Circular isothermal cylinder of length L (6) Circular 1sothermal cylinder of length L
in the midplane of an infinite wall at the center of a square solid bar of the
(z>05D) same length

o AT i :
5 2l (} : - 5 2rnl.

L

b

“In(8z/nD) = Tn (1.08w/D)

(7) Eccentric circular isothermal cylinder T (8) Large plane wall
of length L in a cylinder of the same
length (L > D)

@003 02080S



Conduction shape factor:

(9) A long cylindrical layer

2l

(10) A square flow passage
(a) Fora/b>14,

2xL

=093 {0.04%a/b)

(b)Fora/b< 141,

§= 2nL

|
0.785 In (alb) l._

b

-7

(11) A spherical layer

27D,D,

S=
DE_DI

(12) Disk buried parallel to
the surface in a semi-infinite
medium (z >> D)

5=4D

(§S=2Dwhenz=10)




Conduction shape factor:

(13) The edge of two adjoining
walls of equal thickness

(14) Corner of three walls
of equal thickness

(15) Isothermal sphere buried in a
semi-infinite medium

_ 2rD
1-0.25D/z

(16) Isothermal sphere buried
in a semi-infinite medium at T,

whose surface is insulated Insulated

Tz ( me-dium) ’
. T,

_ 2rD
1+0.25D/z




TRANSIENT HEAT CONDUCTION

Lumped System Analysis: interior temperature remains essentially

uniform at all times during a heat transfer process
(H eat transfer into ) _ (The increase in the energy)

the body during dt of the body during dt

T(t) — Too _ e_bt
T; — To
Where
hAg
=ve, (1/9)

The temperature of a lumped
system approaches the environment
temperature as time gets larger.

@2.GEO
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The rate of convection heat transfer between the body and its environment
at that time:

Q(t) = hA; [T(t) = TOO]
The total amount of heat transfer between the body and the surrounding
medium over the time interval t =0to t
Q =mCG, [T(t) —T;]
Therefore, the maximum heat transfer between the body and its
surroundings

Qmax = me (T — T7)

0= 0., =mC, » (T,-T,)
Heat transfer to or from a body
reaches its maximum value
when the body reaches
the environment temperature.

D002 [
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Criteria for Lumped System Analysis

 Characteristic length: L, = Al
RS
k

e Biot number . Bi

Convection

Y

Conduction
B — h AT Convection at the surface of the body ‘ ‘
' T RIL AT Conduction within the body

SOLID
BODY

t

1

Bi = heat convection
heat conduction

The Biot number can be viewed as the

ratio of the convection at the surface

to conduction within the body.

L.tk Conduction resistance within the body

1/h Convection resistance at the surface of the body

@2.GEO
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Transient Heat Conduction in Large Plane Walls, Long Cvlinders, and

Spheres with Spatial Effects

At time t =0, each geometry is
placed in a large medium that is
at a constant temperature T,
and kept in that medium for t >
0 . Heat transfer takes place
between these bodies and their
environments by convection with
a uniform and constant heat
transfer coefficient h.

(a) A large plane wall (b) A long cylinder (c) A sphere

2 DBOSOS | '+




The variation of the temperature profile with time in the plane wall

The formulation of the problems for the
determination of the one dimensional transient
temperature distribution T(x,t) in a wall results in a
partial differential equation

The following dimensionless quantities:

Dimensionless temperature:

Transient temperature profiles in a
plane wall exposed to convection
from its surfaces for T, = T..

Dimensionless distance from the center:

. . _ e . _hL . .
Dimensionless heat transfer coefficient: Bi = n (Biot number)

. : . at . .

Dimensionless time: =1 (Fourier number)
The nondimensionalization enables us to present the temperature
in terms of three parameters only: x,Bi, and t

GRGEO
wrcap




The solution of one-dimensional transient heat conduction using this one
term approximation

ane I(x,t) — T. 2 | |
Plane TBD T e e N cos (\/L), 1> 0.2

wall: B(L t..]wall - Ti — T,
Cylinder: O(r, 1)y = T 7 - Ae ™M J(\yrlr,), 7>0.2

- > sin(\r/r,) |
Sphere: W g =~ — — =Ae T 7202

003020808 [ 5




Noting that cos(0) = J,(0) = 1 and the limit of (sinx)/x is also 1, these relations
simplify to the next ones at the center of a plane wall, cylinder, or sphere:

T,—T.
Center of plane wall (x = 0): 0o wat = T.- T =

I ©

T{J o TT

Center of cylinder (r = 0): 00, cy1 = T T
. Tn o TT
Center of sphere (r = 0): 0o, sph = T T

I ©

S OLOCOS [ +F
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Table of A;and A, (functions of Bi)

Coefficients used in the one-term approximate solution of transient one-
dimensional heat conduction in plane walls, cylinders, and spheres (Bi = hL/k
for a plane wall of thickness 2L, and Bi = hr,/k for a cylinder or sphere of
radius r,)

Plane Wall Cylinder Sphere
Ay Ay A A A A

0.0998 1.0017 0.1412 1.0025 0.1730 1.0030
0.1410 1.0033 0.1995 1.0050 0.2445 1.0060
0.1987 1.0066 0.2814 1.0099 0.3450 1.0120
0.2425 1.0098 0.3438 1.0148 0.4217 1.0179
0.2791 1.0130 0.3960 1.0197 0.4860 1.0239
0.3111 1.0161 0.4417 1.0246 0.5423 1.0298
0.4328 1.0311 0.6170 1.0483 0.7593 1.0592
0.5218 1.0450 0.7465 0.9208 1.0880
0.5932 1.0580 0.8516 . 1.0528 1164
0.6533 1.0701 0.9408 1.1656 1441
0.7051 . 1.0184 1.2644 1713
0.7506 . 1.0873 1.3525 1978
0.7910 . 1.1490 1.4320 2236
0.8274 1.2048 1.5044 2488
0.8603 1.25568 1.5708 2732
1.0769 1.56995 2.0288 4793
1.1925 1.7887 2.2889 6227
1.2646 1.9081 2.4556 7202
1.3138 1.9898 2.5704 7870
1.3496 2.0490 2.6537 8338
1.3766 2.0937 2.7165 8673
1.3978 2.1286 2.7654 8920
1.4149 2.1566 2.8044 9106
1.4289 2.1795 2.8363 9249
1.4961 2.2880 2.9857 9781
1.5202 2.3261 3.0372 9898
1.56325 2.3455 3.0632 9942
1.5400 2.3572 3.0788 9962
1.56552 2.3809 3.1102 9990
1.5708 2.4048 3.1416 2.0000

e et b o o ot et o ot ot ok ot ot ot
e e e e b e e e e e

1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.




Table of J, (the zeroth-order Bessel function of the first kind)

The zeroth- and first-order Bessel
functions of the first kind

S J€) J1(€)

0.0 1.0000 0.0000
0.1 0.9975 0.0499
0.2 0.9900 0.0995
0.3 0.9776 0.1483
0.4 0.9604 0.1960

0.5118 0.5579
0.4554 0.5699
0.3980 0.5778
0.3400 0.5815
0.2818 0.5812

0.5 0.9385 0.2423
0.9120 0.2867
0.8812 0.3290
0.8463 0.3688
0.8075 0.4059

0.2239 0.5767
0.1666 0.5683
0.1104 0.5560
0.0555 0.5399
0.0025 0.5202

0.7652 0.4400 C000es  —04708

0.7196 0.4709

0.6711 0.4983 -0.1850  —0.4097
' ' ~0.2601  -0.3391

0.6201 0.5220 “o.2601 ~0.3391

0.5669 0.5419
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The change in the energy content of the body:
Qmax — me(Too — Tl) — pVCp(TOO — Tl)

The fraction of heat transfer can abe determined from these
relations, which are based on the one-term approximations:

Plane wall:

£
.,QI]'I.&K_-‘ W .J.“
: i
Cvyhinder: ( = )
- .Qﬂ!.‘j.‘i,.' U']

Sphere: ( 0

=S I H R sp h
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(a) Midplane temperature (from M. P. Heisler)

Transient mid-plane temperature chart for
a plane wall of thickness 2L initiallt at
uniform temperature T; subjected to
convection from both sides to an
environment at temperature T, with a
convection coefficient of h



Transient temperature chart for ”',\. T
" OO

a plane wall of thickness 2L T TR TG

initially at a uniform o ...!EIH:=m4i!i!iﬂHIHHIHﬂHHH'H
fmperatue Tisubjected i St St B
convection rom bath sides o [NNEH Eekctcatt Akt

an environment at temperature pym i T T H
T with a convection coefficient = '
of h.
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Transient heat transfer chart for a plane wall

of thickness 2L initially at a uniform

temperature T; subjected to convection from Qmax = M. Cp [Too - Ti] — PVCp [Too — Ti] kJ
both sides to an environment at temperature

T, with a convection coefficient of h.
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