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Fluid flow in geothermal

It depends on the type of reservoir, the TR, vy 1 AR
fluid flow may vary from liquid water
single-phase, steam single-phase or steam- \\q
water two-phase flows. 5 T\! ———
Water single-phase flow can be found in = NS -
the production well, in the brine pipeline

Production Well Injection Well

after the separator or in reinjection well.

Steam single-phase flow presents in pipe
line leaving the separator or production
well.

Steam-water two-phase flow occurs in the
production well and pipe lines from the
wellhead to the separator.
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e Average velocity in a pipe

— Because of the no-slip condition, the
velocity at the walls of a pipe or duct
flow is zero

— We are often interested only in V,,,
which we usually call just V (drop the
subscript for convenience)

— Keep in mind that the no-slip condition
causes shear stress and friction along the
pipe walls

Friction force of wall on fluid




* For pipes of constant
diameter and
incompressible flow

— V,,, stays the same down
the pipe, even if the
velocity profile changes

v"Why? Conservation of
\EISS

m = pVavgA = constant




For pipes with variable diameter, m is still the same due to
conservation of mass, but V, #z V,

NN 4 ,_,_7-,_‘_‘
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Laminar and Turbulent Flows

Laminar Flow
Can be steady or unsteady.

(Steady means that the flow field at any
instant in time is the same as at any other
instant in time.)

Can be one-, two-, or three-dimensional.

Has regular, predictable behavior

1‘ Diye injection

Analytical solutions are possible (see
Chapter 9).

Orccurs at fow Reynolds numbers.

Turbulent Flow

Is alwaws wnsiead).

Why? There are always random, swirling
motions (vortices or eddies) in a turbulent
flow.

Nore: However, a tarbulent flow can be
steady in the mean. We call this a
srationar)y fwrbulent Tow.

Is always three-dimensional.

Why? Apain because of the random
swirling eddies, which are in all directions.

MNere: However, a tarbulent flow can be 1-
D or 2-I3 in the mean.

Has irregular or chaotic behavior (cannot
predict exactly — there is some randomness
associated with any turbulent flow.

Dve trace

f Dive injection

No analytical solutions exist! (It is too
complicated, again because of the 3-D,
unsteady, chaotic swirling eddies.)

Occurs at Aigh Reynolds numbers.




* Critical Reynolds number (Re_,)
for flow in a round pipe

Re < 2300 = laminar

DEINIIE €l RENDIS LM 9] 2300 < Re < 4000 = transitional

N Re > 4000 = turbulent
Re = Inertial forces e Note that th |
Viscons forces ote .a ese values are
= A * For a given application, Re_ depends
upon
pVang P :
= % — Pipe roughness
VgL — Vibrations . |
7 — Upstream fluctuations, disturbances
(valves, elbows, etc. that may disturb
the flow)
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 For non-round pipes, define the hydraulic
diameter
Circular tube: . D, =4A C/ P
A.= cross-section area
P = wetted perimeter

B, 4(mD?/4) _

1

E—)

e Example: open channel =
by

P=0.15+0.15 + 0.5 = 0.8m

Rectangular duct: Don’t count free surface, since it does not contribute
b to friction along pipe walls!
"T2a+b) D,=4A/P=4*0.06/0.8 =0.3m

What does it mean? This channel flow is equivalent to
a round pipe of diameter 0.3m (approximately).
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The Entrance Region

e Consider a round pipe of diameter D. The flow can be laminar
or turbulent. In either case, the profile develops downstream
over several diameters called the entry length L,. L,/D is a
function of Re.

Irrotational (core) Velocity boundary Developing velocity Fully developed
flow region profile velocity profile
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Fully Developed Pipe Flow

e Comparison of laminar and turbulent flow

There are some major differences between laminar and
turbulent fully developed pipe flows

Laminar V=il = Upax/2

u

max

e Can solve exactly

e Flow is steady

e Velocity profile is parabolic

e Pipe roughness not important

It turns out that V, .= 1/2U,_ . and u(r)= 2V

avg

(1-r?/R?)




Turbulent
* Cannot solve exactly (too complex)
e Flow is unsteady (3D swirling eddies), but it is steady in the mean

* Mean velocity profile is fuller (shape more like a top-hat profile, with very
sharp slope at the wall)

* Pipe roughness is very important

* V,85%of U ., (depends on Re a bit)

* No analytical solution, but there are some good semi-empirical
expressions that approximate the velocity profile shape.
Logarithmic law

Power law
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Wall-shear stress

e Recall, for simple shear flows u=u(y), we had

7= udu/dy
e |n fully developed pipe flow, it turns out that
7= udu/dr

1,, = Shear stress at the wall,

acting on the fluid Twturb =

w,lam
ARGEO
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Pressure drop

There is a direct connection between the pressure drop in a pipe and the
shear stress at the wall

Consider a horizontal pipe, fully developed, and incompressible flow

.-H""'.'Tw
-
1—1—1—1—1—1—4—‘—

-

I Take CV inside the pipe wall
F'-1—" |

Let’s apply conservation of mass, momentum, and energy to this Control
Volume
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Conservation of Mass

?’i’blz?ﬁg:m

le = pffg — V = const

Conservation of x-momentum

ZF = ZF “grav T ZFm,press + ZFm,visc + ZFQ; her = Zﬁmv — Z/@mv

out in

Terms cancel since 3, = B,
and V; =V,

@2.GEO
wronp




e Thus, x-momentum reduces to

 Energy equation (in head form)

cancel (horizontal pipe)

Velocity terms cancel again because V, = V,, and o, = a, (Shape not changing)

o h_ = irreversible head
Pl o P2 — PghL loss & it is felt as a pressure

drop in the pipe
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Friction Factor

From momentum CV analysis L
Pl — P2 — 4Tw

D

Pl — P2 — pghL
Equating the two gives

L 41, L
TD pgnr L 0g D

To predict head loss, we need to be able to calculate 7. How?
— Laminar flow: solve exactly
— Turbulent flow: rely on empirical data (experiments)
— In either case, we can benefit from dlmen5|onal analysis!

From energy CV analysis

&R.6E0
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e 1,=funclp, V, u, D, ¢) ¢ = average roughness of the
inside wall of the pipe

e [I-analysis gives
8Tw
M
€
II; = func(Ily, I13) f = func(Re,€/D)
02020802 [T

= roughness factor




* Now go back to equation for h, and substitute f for 7,

e Qur problem is now reduced to solving for Darcy friction factor f

But for laminar flow, roughness does

— Therefore not affect the flow unless it is huge
e Laminar flow: f=64/Re (exact)

e Turbulent flow: Use charts or empirical equations (Moody Chart, a famous plot of f
vs. Re and &/D)

GRGEO
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The Moody Chart

T T
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Relative roughness, &/D

T~ = - - 0.001
i 0.0008
, . ‘ 0.0006
Material ft mm |
0.0004

Glass, plastic 0 V]

Concrete 0.003-0.03 099

Wood stave 00016 05 LT [ [ 7| 0.0002

Rubber, smoothed 0.000033 0.01

[ Copper or brass tubing 0.000005 00015 T | y 0.0001
Cast iron 0.00085 0.26 1 1 114
Galvanized iron 0.0005 0.15 0.00005
Wrought iron 0.00015 0046 | 11 T T

| Stainless steel 0.000007 0.002 1
Commercial steel 0.00015 0.045 ! A = -
Ll N A RN NN T | ] = = 0.00001

103 2010 3 456 8 104 20103 4 56 8105 2(10°) 3 4 56 8 1096 2103 456 8107 2103 456 8108

Reynolds number, Re




Moody chart was developed for circular pipes, but can be
used for non-circular pipes using hydraulic diameter

Colebrook equation is a curve-fit of the data which is
convenient for computations (e.g., using EES)

e/D 251 )

7 = —2.0log (W + Rev/T

Implicit equation for f which can be solved
using the root-finding algorithm in EES

Both Moody chart and Colebrook equation are accurate to
+15% due to roughness size, experimental error, curve fitting
of data, etc.




Approximation to Colebrook Equation

Table 1. WVarious approximations of the Colebrook’™s equation

Ea. : Amarhors
- ) Equation Range Ref PR
108 3 =
_ Re — 4000 — S - 10 Moody
4y #F — 0.00SS 1+{200005+ :E P =1 1047y
0.25
Sy =01 1( s= sj ™Mot specified =1 ‘?11;5"52‘;1
_ o154 Re — 4000 — S - 107 Wood
[ S — 053+ 00940225, gg 0445 —1.625 -—— 000001 — O O3 [1o] (1966
= 7 = Churchill
7y e I:leog[73 e j 1 Mot specified r: 16737
P
z1.25 Re — SO00 — 107 Fain
S f=|:1'14_21°g(5+R209J:| =— 000004 — 0 05 =] C12 76D
oy = I:f?log[i S_Ta j Re — SOO00 — 105 133 Swmee'
57 T 2t 1 =— 0000001 — 005 (1976)
= S 0352 SLroes S5 BSOS _ = Chen
cres 7 { 210g{3,70657 Re °%| S a557 " mo0=58L Foe = 4000 — 41 =1 1879
— =
Re — 4000 — 4 - 10 Found
€11y o — [—1 Slﬂ:vg[:[! 135 + 2= ] PR r1s1 Round
=i
= Re — 4000 — 10°%
12y Fa {—zlog e Log[ﬁ+7j}]} G OOOOS — O oS [1s] s?;‘;esszt;r
= et Re — 4000 — 10° Haaland
€13y # —q 1.Bloz= [Tﬁ—,j =— 0000001 — 005 r1=1 (19833
025
ss =
av —on{ - SJ WUt | ma | I,
If 4= 0018 then # — 4 andif 4 < 0.01lS then # — 0O 0028+ 0 854
- > = o
= os 96 .32 4000 — 10 Manadilli
(153 fz[*ZIOg[377o+ GoEE  ma j 1 O 005 e (1997
s. 0272 _ 4.567
— ¥ o1, = — 1o [
- { g[a,?oss Re =l 3E27 - Romeo.
160 Re— 3000 — 1.5 - 10 =07 Rovo.
0. 9029 0.9345 =0 — 0.05
os  5.3326 2002
T 7o 208 82 + Re
S0 525 ss.291 = Fang
17 —_ 1.1007 _ = > 1
€17y ra 1,513[1;:[0,234.9 —iiios T maois 21] 2o113
- 2
Re O A3AT S =
— . - —| —2log| 10 = _ 1
c1s) £ —In L S1o1m 1 1/e 7 I: g[ 3.71) Mot specified [71 |Brkic (zo11>
- In(l-—+1 1Re)
2
& —1in Re B fz{,gog(ﬂ+i)]
C19) - 1 8161n 1. 1Re Re 3.71 Mot specified 71 Brikic (20117
- In(1l+1 1Re)
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Types of Fluid Flow Problems

In design and analysis of piping systems, 3 problem types are
encountered

1. Determine Ap (or h)) given L, D, V (or flow rate)

Can be solved directly using Moody chart and Colebrook equation
2. DetermineV, given L, D, Ap

3. Determine D, given L, Ap, V (or flow rate)

 Types 2 and 3 are common engineering design problemes, i.e.,

selection of pipe diameters to minimize construction and
pumping costs

However, iterative approach required since both V and D are
in the Reynolds number.

D002 [




e Explicit relations have been developed which eliminate
iteration. They are useful for quick, direct calculation, but
introduce an additional 2% error

3000 < Re < 3 x 108

5000 < Re < 3 x 108
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Minor Losses

Piping systems include fittings, valves, bends, elbows, tees,
inlets, exits, enlargements, and contractions

These components interrupt the smooth flow of fluid and
cause additional losses because of flow separation and mixing

We introduce a relation for the minor losses associated with
these components

K, is the loss coefficient.

Is different for each component.

Is assumed to be independent of Re.
Typically provided by manufacturer or
generic table.




e Total head loss in a system is comprised of major losses (in the
pipe sections) and the minor losses (in the components)

hL — hL,major + hL,minor

| pipe sections j components

e |f the piping system has constant diameter
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Minor Losses
Here are some sample loss coefficients for various minor loss components. More values are
listed in Table 8-4, page 350 of the Clengel-Cimbala textbook:

Fipe linfet
Reantrani: K, = 0.80 Sharp—edged. Well-rounded (WD > 0.2]
(t==< Dand f == .10} L Stightly rounded (i) = 0.1): K, = O.12>
‘. (see Fig. B-36€) —
e Rounding of an inlet
makes a big difference.

e

—

Fipe Exit -
Reentrant: K, = o Sharp—ed.EEd Rounded (K, =« 2, \:

Rounding of
an outlet

makes no
—_—V difference.

R

Sircidlen Expransiorn and Contraction {based on the vedocily in the smmalior-diaredor gipe)

dE Zz
Sudden expansion: K; — (1 = E)

MNote that the larger velocity (the

I wvelocity associated with the smaller pipe
e section) 15 used by convention in the

3
eguation for minor head loss, i.e.,

o 5
- ¥




Swdden canfraction: See chart. 0.4

comiraction

Mote: Thase are

listed for Expes
be those for Coniracton,
and vice-wersa.

threaded albovy:
o= 0.4




Piping Networks

e Two general types of networks
— Pipes in series
e Volume flow rate is constant
* Head loss is the summation of parts
— Pipes in parallel

* Volume flow rate is the sum of the
components

* Pressure loss across all branches is
the same




e For parallel pipes, perform CV analysis between points A and B

Py 1% Pp %
_+al_+zA—_+(12£+zB+hL

Pg 29

AP
Pg

e Since Ap is the same for all branches, head loss in all branches
is the same

@2.GEO
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Thank You

meeo
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