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Geothermal Reservolirs

First examples worldwide
e Lardarello (Italy)
 Wairakel (New Zealand)

 The Geysers (California, USA)
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What represents a typical
geothermal reservoir?

 Permeability through fracture network

e Large vertical extent

 Horizontal and vertical extents are often unclear
e Caprock? Communication with surroundings?

In all cases: FLOW of FLUIDS (water, steam, gas, mixtures)
and CONVECTION of heat

e Natural convective flow
 Induced flow to and from wells
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A geyser: Large-scale circulation of
hot fluid

200 400 600
Temperature °C

<4— boiling
begins
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Fundamentals of Geothermal
Reservoir Engineering

e Gain conceptual understanding

 Gain quantitative understanding
 Flow of mass and heat

 Development vs time
 Response to operations (production and injection)

e Support decision making

 Approaches:
 Material balance models, Lumped parameter models

e Pressure transient models
* Numerical simulation
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OUTLINE

. Simple Quantitative Models
a. Storage concepts

b. Lumped-parameter models
c. Dual-porosity models

Il.Pressure Transient Models
a. Darcy’s law
b. Mass balance

c. Constant terminal rate solution
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Concept of
a mate ri al Injection Production
balance

approach

® Cold Water = Hot Water
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Concepts of storage
1. Closed box with liquid

e Conservation of mass 3nd energy
Va(cpp) 4
d
V=1 = @)pmnlUn + @pUl = —WH

« Small temperature changes yield
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Concepts of storage
2. Closed box with gas

 For gas: Use mass change rather than volume change

 Imperfect gas law pV = ZnRT

Vp_ VRT
P Z—QUP M

e S0: linear change of p/Z with mass @pV in the reservoir
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Concepts of storage
3. Closed box with water level

e Constant pressure in gas
zone

aP__ . dh_
dt -~ P9 T P9 a0ns

o (]
0 Iel
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Concepts of storage
4. Closed box with two-phase fluid

e Water and steam In contact

e Cooling of the total system (rock and pore content)
* Production causes pressure drop
e Part of the water evaporites

C;’;S evaluated on saturation line
AT = AP/ s
_ dT

e Heat released from matrix and liquid (depending on
total heat capacity p;C;):

Q = Vp:CAT; p:Cr = (1 — QD),DmCm + @S5y, pw Cw
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e Increase In volume must contain the heat extracted

AV Q (1 1)_thCtAT(1 1)
Hgy \ps  pw Hgyw \pPs Pw

e Total compressibility follows

d_V _ PCt pw — Ps ATsqy
dP  Hsy pwps dP

PCr =
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Exercise: Compare compressibilities

 500-m thick aquifer

e 240°C

 15% porosity

« Volumetric heat capacity p,C, = 2.5 MJ/m3K

 What is the compressibility for the 4 systems?




Lumped-parameter models

* Volume balance of withdrawal and recharge
(SM =V'S= V'¢Ch):

W, = a(Py, —P)
» Glves exponential approach Withdrawal
to equilibrium
nergleel5) :
Rech :
a Sm il A Reservoir
resistance

@ (State variable P, T, S,...)
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Lumped-parameter models

Withdrawal W and recharge «:

* Pressure decrease for short
times linear; Pp—P=W/Sy-t

» Influence of recharge after — M
e Equilibrium pressure
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Lumped-parameter models

 Decrease In pressure
 Free water level

 Development of steam / two-phase flow
« Changes in compressibility (S,,)

e Cold water recharge
e Increasing the mass content

 Both increase and decrease of pressure possible
Depending on heat balance (condensation of steam!)
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Steam reservoir with immobile
water

* Production of steam will decrease pressure
e Evaporating water
e Until the reservoir is “superheated”

Most of the energy is stored In the rock and in the
Immobile water

e Possibility to raise the pressure by injecting cold water
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Reserves

e Volume
« Temperature
 Recovery factor (3 — 17%)

e Conversion efficiency
« Thermodynamic perfect engine (AT /T,,;)
 Technological limit

e Consider uncertainties!

’.F.‘.GEO

22/01/2019 ®) & iR



Production

* In-situ boiling / intergranular vaporization
 Produce steam by reducing pressure

e Cold sweep
* Inject cold water to extract all heat in liquid water
 Use of heat still requires steam
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e /0% water saturated;
*V,.s = 2km x 2 km x 250 m
e T.. = 240°C

Exercise

Estimate the energy of a o
reservoir *To=157C

- Produce steam by *¢ =015

decreasing pressure and  * 2:Ce = 2.5 MJ/m°K |
temperature down to 10 (rock specific heat capacity)

bar / 180°C * puCy = 3.6 MI/M3K _
_Cold sweep (extract all (water specific heat capacity)

heat and use flash steam °* PsCs = 0.21 MJ/m°K
at 150°C) (steam specific heat

## not enough info?? capacity)
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Fractured reservolirs

Fluid flow

 Modelled by dual-porosity
systems
 Flow through fracture system
e Porosity in matrix system
 Heat extracted from matrix blocks

 Equations in two systems coupled
through exchange term

e Slower cooling of matrix blocks

e Dispersion due to variability of
speeds
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1. Pressure transient models

* Reservoir dynamics: Development of pressure in space
and time

e Start with homogeneous model
e Start with single-phase fluid — liquid or gas

e Ingredients
 Darcy’s law
e Local mass balance
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Darcy’s law

e Linear relationship between pressure gradient and flow
velocity
k (dP dz

vV=——\—— —
u \dL gdL

 Permeability k: measure of “ease of flow” —
measurement unit [L?]

* 1 Darcy = 1012 m?

); V= —%(VP—gVZ)
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Radial geometry

 Horizontal flow — negligible gravitational forces

e Constant thickness

e Lavyer full enetrated by well
' Yp Y q . gD




Homogeneity and Isotropy

 Heterogeneity
Spatially varylng permeability

. AnlsotropP/ : : : :
Permeability dependent on direction, i.e. a matrix

k
v=——(VP—gVz);

U
kxx kxy kxz
k=|Fkyx Kkyy ky;
k kzy Kzz
e On principal axes:
kys kys ks
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Homogeneity and Isotropy




Two-phase flow

e Co-existing water and
steam, both flowing

e Relative permeability
for water and for steam
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Uy = Uy, + Ug :—k{‘urw+f}\7P
w S

0.4 0.6
Saturation

"1?.‘.650

i s Bis T
7 cnp
N\


Presenter
Presentation Notes
3.3.4


| ocal mass balance

e In a volume element, the accumulation of mass and the
outflow cancel out

5(07) =7 (7v)

G,
a(cpp) = —=V-(pv)

* In a radially symmetric system
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Combining mass balance and
Darcy’s law

oP 10 k OP
‘pCpat ror '0/,1 ar

 Assuming small, constant compressibility and constant
viscosity facilitates linearization

pcudP 1 d ( OP
k ot ror
 Diffusivity equation (heat equation) with diffusivity k =
ocu/k — many solutions available




Constant Terminal Rate Solution

 Diffusivity equation
cudP 10 ( OP)

k ot ror\ or

e Start withdrawal at time O with a rate g or mass rate
W = p - q gives solution in terms of exponential integral

o1 _
Ei(x) = |, e Ydy

CL T2
AP =P —p, = ——" E(ka“%)

 4mkh !




Constant Terminal Rate Solution

2 2
qu pcur q ST
° " 4nkh 1( k 4t) AT 1(T4t)

Character of curve determined by
e Transmissivity (Mobility-thickness) T = kh/u
e Storativity S = ¢ch

Well testing: Determine S and T from observation of
pressure development
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Constant Terminal Rate solution

Example pressure
distribution with

e = 0.15
ek =100 md
ec = 108Pal
eu=0.5cP
eh =50m

eg = 0.01 m3/s
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Constant Terminal Rate solution

Semi-log plot
e Linear curves

 Pressure penetration
depth
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Exercise

e Typical reservoir
 When are boundaries reached?
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