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Geothermal Reservoirs

First examples worldwide

• Lardarello (Italy)

• Wairakei (New Zealand)

• The Geysers (California, USA)
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What represents a typical 
geothermal reservoir?
• Permeability through fracture network
• Large vertical extent
• Horizontal and vertical extents are often unclear
• Caprock? Communication with surroundings?

In all cases: FLOW of FLUIDS (water, steam, gas, mixtures) 
and CONVECTION of heat

• Natural convective flow
• Induced flow to and from wells



A geyser: Large-scale circulation of 
hot fluid
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Fundamentals of Geothermal 
Reservoir Engineering
• Gain conceptual understanding
• Gain quantitative understanding

• Flow of mass and heat
• Development vs time
• Response to operations (production and injection)

• Support decision making
• Approaches:

• Material balance models, Lumped parameter models
• Pressure transient models
• Numerical simulation



OUTLINE

I. Simple Quantitative Models
a. Storage concepts
b. Lumped-parameter models
c. Dual-porosity models

II.Pressure Transient Models
a. Darcy’s law
b. Mass balance
c. Constant terminal rate solution



I. Concept of 
a material 
balance 
approach
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Concepts of storage
1. Closed box with liquid
• Conservation of mass and energy

𝑉𝑉
𝑑𝑑
𝑑𝑑𝑑𝑑

𝜑𝜑𝜑𝜑 = −𝑊𝑊

𝑉𝑉
𝑑𝑑
𝑑𝑑𝑑𝑑

1 − 𝜑𝜑 𝜌𝜌𝑚𝑚𝑈𝑈𝑚𝑚 + 𝜑𝜑𝜑𝜑𝜑𝜑 = −𝑊𝑊𝑊𝑊

• Small temperature changes yield

𝑉𝑉𝜑𝜑
𝜕𝜕𝜕𝜕
𝜕𝜕𝑃𝑃 𝑇𝑇

𝑑𝑑𝑃𝑃
𝑑𝑑𝑑𝑑

= −𝑊𝑊;
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −
𝑞𝑞
𝑆𝑆𝑉𝑉

= −
𝑊𝑊
𝑆𝑆𝑀𝑀

𝑆𝑆𝑉𝑉 = 𝑉𝑉𝜑𝜑𝜑𝜑; 𝑆𝑆𝑀𝑀 = 𝑉𝑉𝜑𝜑𝜌𝜌𝑐𝑐
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Concepts of storage
2. Closed box with gas
• For gas: Use mass change rather than volume change

• Imperfect gas law 𝑝𝑝𝑝𝑝 = 𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍

𝜑𝜑𝑉𝑉
𝑝𝑝
𝑍𝑍

= 𝜑𝜑𝜑𝜑𝜑𝜑
𝑅𝑅𝑅𝑅
𝑀𝑀

• So: linear change of p/Z with mass 𝜑𝜑𝜑𝜑𝜑𝜑 in the reservoir

𝑑𝑑
𝑑𝑑𝑑𝑑

𝑝𝑝
𝑍𝑍

= −𝑊𝑊
𝑅𝑅𝑅𝑅
𝑀𝑀𝜑𝜑𝜑𝜑



Concepts of storage
3. Closed box with water level

• Constant pressure in gas 
zone

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −∆𝜌𝜌𝜌𝜌
𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −∆𝜌𝜌𝜌𝜌
𝑞𝑞

𝐴𝐴𝐴𝐴∆𝑆𝑆

q

∆𝑷𝑷 = ∆𝝆𝝆𝝆𝝆∆𝒉𝒉

∆𝒉𝒉

𝑷𝑷(𝒛𝒛)
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Concepts of storage
4. Closed box with two-phase fluid
• Water and steam in contact
• Cooling of the total system (rock and pore content) 

• Production causes pressure drop 
• Part of the water evaporites
• 𝑑𝑑𝑃𝑃𝑠𝑠
𝑑𝑑𝑑𝑑

evaluated on saturation line

∆𝑇𝑇 = �∆𝑃𝑃
𝑑𝑑𝑃𝑃𝑠𝑠
𝑑𝑑𝑑𝑑

• Heat released from matrix and liquid (depending on 
total heat capacity 𝜌𝜌𝑡𝑡𝐶𝐶𝑡𝑡): 

𝑄𝑄 = 𝑉𝑉𝜌𝜌𝑡𝑡𝐶𝐶𝑡𝑡∆𝑇𝑇; 𝜌𝜌𝑡𝑡𝐶𝐶𝑡𝑡 = 1 − 𝜑𝜑 𝜌𝜌𝑚𝑚𝐶𝐶𝑚𝑚 + 𝜑𝜑𝑆𝑆𝑤𝑤𝜌𝜌𝑤𝑤𝐶𝐶𝑤𝑤
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• Increase in volume must contain the heat extracted

∆𝑉𝑉 =
𝑄𝑄
𝐻𝐻𝑠𝑠𝑠𝑠

1
𝜌𝜌𝑠𝑠
−

1
𝜌𝜌𝑤𝑤

=
𝑉𝑉𝜌𝜌𝑡𝑡𝐶𝐶𝑡𝑡∆𝑇𝑇
𝐻𝐻𝑠𝑠𝑠𝑠

1
𝜌𝜌𝑠𝑠
−

1
𝜌𝜌𝑤𝑤

• Total compressibility follows

𝜑𝜑𝑐𝑐𝑡𝑡 =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝜌𝜌𝑡𝑡𝐶𝐶𝑡𝑡
𝐻𝐻𝑠𝑠𝑠𝑠

𝜌𝜌𝑤𝑤 − 𝜌𝜌𝑠𝑠
𝜌𝜌𝑤𝑤𝜌𝜌𝑠𝑠

𝑑𝑑𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑



Exercise: Compare compressibilities

• 500-m thick aquifer
• 240°C
• 15% porosity
• Volumetric heat capacity 𝜌𝜌𝑡𝑡𝐶𝐶𝑡𝑡 = 2.5 MJ/m3K

• What is the compressibility for the 4 systems?



Lumped-parameter models

• Volume balance of withdrawal and recharge 
(𝑆𝑆𝑀𝑀 = 𝑉𝑉 � 𝑆𝑆 = 𝑉𝑉 � 𝜙𝜙𝜙𝜙):

𝑆𝑆𝑀𝑀
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝑊𝑊 −𝑊𝑊𝑟𝑟 = 0

• Recharge rate proportional to pressure difference
𝑊𝑊𝑟𝑟 = 𝛼𝛼 𝑃𝑃0 − 𝑃𝑃

• Gives exponential approach 
to equilibrium
𝑃𝑃0 − 𝑃𝑃 =

𝑊𝑊
𝛼𝛼

1 − exp −
𝛼𝛼𝛼𝛼
𝑆𝑆𝑀𝑀
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Lumped-parameter models 
Withdrawal W and recharge 𝛼𝛼: 

𝑃𝑃0 − 𝑃𝑃 =
𝑊𝑊
𝛼𝛼
� 1 − exp −

𝛼𝛼𝛼𝛼
𝑆𝑆𝑀𝑀

• Pressure decrease for short 
times linear; 𝑃𝑃0 − 𝑃𝑃 ≈ 𝑊𝑊/𝑆𝑆𝑀𝑀 � 𝑡𝑡

• Influence of recharge after 𝜏𝜏 = 𝑆𝑆𝑀𝑀
𝛼𝛼

• Equilibrium pressure 𝑃𝑃0 − 𝑃𝑃 ≈ 𝑊𝑊/𝛼𝛼



Lumped-parameter models

• Decrease in pressure 
• Free water level
• Development of steam / two-phase flow

• Changes in compressibility (SM)

• Cold water recharge
• Increasing the mass content
• Both increase and decrease of pressure possible

Depending on heat balance (condensation of steam!)



Steam reservoir with immobile 
water
• Production of steam will decrease pressure
• Evaporating water
• Until the reservoir is “superheated”

Most of the energy is stored in the rock and in the 
immobile water

• Possibility to raise the pressure by injecting cold water



Reserves

• Volume
• Temperature
• Recovery factor (3 – 17%)
• Conversion efficiency

• Thermodynamic perfect engine (∆𝑇𝑇/𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟)
• Technological limit

• Consider uncertainties!

1922/01/2019



Production

• In-situ boiling / intergranular vaporization
• Produce steam by reducing pressure

• Cold sweep
• Inject cold water to extract all heat in liquid water
• Use of heat still requires steam

2022/01/2019

Reservoir fluidHeated injected fluidInjected fluid and 
cooled rock



Exercise

Estimate the energy of a 
reservoir
- Produce steam by 
decreasing pressure and 
temperature down to 10 
bar / 180°C

- Cold sweep (extract all 
heat and use flash steam 
at 150°C) 
## not enough info??

2122/01/2019

• 70% water saturated; 
• Vres = 2 km x 2 km x 250 m
• Tres = 240°C
• T0 = 15°C
• 𝜙𝜙 = 0.15
• 𝜌𝜌𝑡𝑡𝐶𝐶𝑡𝑡 = 2.5 MJ/m3K 
(rock specific heat capacity)

• 𝜌𝜌𝑤𝑤𝐶𝐶𝑤𝑤 = 3.6 MJ/m3K 
(water specific heat capacity)

• 𝜌𝜌𝑠𝑠𝐶𝐶𝑠𝑠 = 0.21 MJ/m3K 
(steam specific heat 
capacity)



Fractured reservoirs

• Modelled by dual-porosity 
systems

• Flow through fracture system
• Porosity in matrix system
• Heat extracted from matrix blocks
• Equations in two systems coupled 

through exchange term
• Slower cooling of matrix blocks
• Dispersion due to variability of 
speeds

2222/01/2019



II. Pressure transient models
• Reservoir dynamics: Development of pressure in space 
and time

• Start with homogeneous model

• Start with single-phase fluid – liquid or gas

• Ingredients
• Darcy’s law
• Local mass balance

Presenter
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Darcy’s law

• Linear relationship between pressure gradient and flow 
velocity

𝑣𝑣 = −𝑘𝑘
𝜇𝜇

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
− 𝑔𝑔 𝑑𝑑𝑧𝑧

𝑑𝑑𝑑𝑑
; 𝐯𝐯 = − 𝑘𝑘

𝜇𝜇
𝛻𝛻𝛻𝛻 − 𝑔𝑔𝛻𝛻𝑧𝑧

• Permeability 𝑘𝑘: measure of “ease of flow” –
measurement unit [L2]

• 1 Darcy ≈ 10-12 m2

p
p + dp

dL

X
Y

Z
s



Radial geometry

• Horizontal flow – negligible gravitational forces
• Constant thickness
• Layer fully penetrated by well

𝑣𝑣 = −
𝑞𝑞
𝐴𝐴

= −
𝑘𝑘
𝜇𝜇
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝐴𝐴 = 2𝜋𝜋𝜋𝜋𝜋

rw

r

h

dr

p p + dp



Homogeneity and Isotropy
• Heterogeneity:
Spatially varying permeability

• Anisotropy:
Permeability dependent on direction, i.e. a matrix

𝐯𝐯 = −
𝐤𝐤
𝜇𝜇
𝛻𝛻𝛻𝛻 − 𝑔𝑔𝑔𝑔𝑔𝑔 ;

𝐤𝐤 =
𝑘𝑘𝑥𝑥𝑥𝑥 𝑘𝑘𝑥𝑥𝑥𝑥 𝑘𝑘𝑥𝑥𝑥𝑥
𝑘𝑘𝑦𝑦𝑦𝑦 𝑘𝑘𝑦𝑦𝑦𝑦 𝑘𝑘𝑦𝑦𝑦𝑦
𝑘𝑘𝑧𝑧𝑧𝑧 𝑘𝑘𝑧𝑧𝑧𝑧 𝑘𝑘𝑧𝑧𝑧𝑧

• On principal axes:
𝑘𝑘𝑥𝑥; 𝑘𝑘𝑦𝑦; 𝑘𝑘𝑧𝑧



Kx= 100 mD
Kz=100 mD

Kx= 100 mD
Kz=100 mD

Kx= 100 mD
Kz=200 mD

Kx= 50 mD
Kz=100 mD

Kx= 100 mD
Kz=200 mD

Kx= 100 mD
Kz=200 mD

Kx= 200 mD
Kz=200 mD

Kx= 100 mD
Kz=100 mD

homogeneous and isotropic heterogeneous and isotropic

homogeneous and anisotropic heterogeneous and anisotropic

Homogeneity and Isotropy



Two-phase flow

• Co-existing water and 
steam, both flowing

• Relative permeability 
for water and for steam

𝑢𝑢𝑡𝑡 = 𝑢𝑢𝑤𝑤 + 𝑢𝑢𝑠𝑠 = −𝑘𝑘
𝑘𝑘𝑟𝑟𝑟𝑟
𝜇𝜇𝑤𝑤

+
𝑘𝑘𝑟𝑟𝑟𝑟
𝜇𝜇𝑠𝑠

𝛻𝛻𝑃𝑃

Presenter
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Local mass balance
• In a volume element, the accumulation of mass and the 
outflow cancel out

𝜕𝜕
𝜕𝜕𝜕𝜕

𝜑𝜑
𝑚𝑚
𝑉𝑉

= −𝛻𝛻 �
𝑚𝑚
𝑉𝑉
𝐯𝐯

𝜕𝜕
𝜕𝜕𝜕𝜕

𝜑𝜑𝜌𝜌 = −𝛻𝛻 � 𝜌𝜌𝐯𝐯

• In a radially symmetric system
𝛻𝛻 � 𝜌𝜌𝐯𝐯 =

1
𝑟𝑟
𝜕𝜕
𝜕𝜕𝜕𝜕

𝑟𝑟 � 𝜌𝜌𝜌𝜌



Combining mass balance and 
Darcy’s law

𝜑𝜑𝑐𝑐𝜌𝜌
𝜕𝜕𝑃𝑃
𝜕𝜕𝜕𝜕

=
1
𝑟𝑟
𝜕𝜕
𝜕𝜕𝜕𝜕

𝜌𝜌
𝑘𝑘
𝜇𝜇
𝑟𝑟
𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟

• Assuming small, constant compressibility and constant 
viscosity facilitates linearization

𝜑𝜑𝜑𝜑𝜑𝜑
𝑘𝑘

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
1
𝑟𝑟
𝜕𝜕
𝜕𝜕𝜕𝜕

𝑟𝑟
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

• Diffusivity equation (heat equation) with diffusivity 𝜅𝜅 =
𝜑𝜑𝜑𝜑𝜑𝜑/𝑘𝑘 – many solutions available



Constant Terminal Rate Solution

• Diffusivity equation
𝜑𝜑𝜑𝜑𝜑𝜑
𝑘𝑘

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
1
𝑟𝑟
𝜕𝜕
𝜕𝜕𝜕𝜕

𝑟𝑟
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

• Start withdrawal at time 0 with a rate q or mass rate 
𝑊𝑊 = 𝜌𝜌 � 𝑞𝑞 gives solution in terms of exponential integral 
𝐸𝐸1 𝑥𝑥 = ∫𝑥𝑥

∞ 1
𝑦𝑦
𝑒𝑒−𝑦𝑦𝑑𝑑𝑑𝑑

∆𝑃𝑃 = 𝑃𝑃 − 𝑃𝑃0 = −
𝑞𝑞𝑞𝑞
4𝜋𝜋𝜋𝜋𝜋

𝐸𝐸1
𝜑𝜑𝜑𝜑𝜑𝜑
𝑘𝑘

𝑟𝑟2

4𝑡𝑡



Constant Terminal Rate Solution

∆𝑃𝑃 = 𝑃𝑃 − 𝑃𝑃0 = −
𝑞𝑞𝑞𝑞
4𝜋𝜋𝜋𝜋𝜋

𝐸𝐸1
𝜑𝜑𝜑𝜑𝜑𝜑
𝑘𝑘

𝑟𝑟2

4𝑡𝑡
= −

𝑞𝑞
4𝜋𝜋𝑇𝑇

𝐸𝐸1
𝑆𝑆
𝑇𝑇
𝑟𝑟2

4𝑡𝑡
Character of curve determined by
• Transmissivity (Mobility-thickness)  𝑇𝑇 = 𝑘𝑘𝑘/𝜇𝜇
• Storativity 𝑆𝑆 = 𝜑𝜑𝜑𝜑𝜑
Well testing: Determine S and T from observation of 
pressure development

Presenter
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Constant Terminal Rate solution

Example pressure 
distribution with
• φ = 0.15
• k = 100 md
• c = 10-8 Pa-1

• µ = 0.5 cP
• h = 50 m
• q = 0.01 m3/s

r [m]

0 20 40 60 80 100

dP
 [P

a]

10 5

-12

-10

-8

-6

-4

-2

0

t = 10

t = 30

t = 100

t = 300

t = 1000

t = 3000

t = 10000

t = 30000

t = 100000
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Constant Terminal Rate solution

Semi-log plot
• Linear curves
• Pressure penetration 
depth

𝑑𝑑𝑑𝑑 ≈
𝑞𝑞
4𝜋𝜋𝑇𝑇

ln
𝑆𝑆
𝑇𝑇
𝑟𝑟2

4𝑡𝑡
+ γ

r [m]

10 -1 10 0 10 1 10 2

dP
 [P

a]

10 5

-12

-10

-8

-6

-4

-2

0

t = 10

t = 30

t = 100

t = 300

t = 1000

t = 3000

t = 10000

t = 30000

t = 100000
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Exercise

• Typical reservoir
• When are boundaries reached?
• …
• …
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