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Well Testing

Books

* M.A. Grant & P.F. Bixley (2011) Geothermal Reservoir
Engineering

 D. Bourdet (2002) Well test analysis: the use of advanced
Interpretation models

 R. Horne (2001) Cumputer aided well test analysis
SPE monograph

* Gringarten (2008) From Straight Lines to Deconvolution:
The Evolution of the State of the Art in Well Test Analysis
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Outline

| Introduction
e Il Well testing basics

* |1l Geothermal Well testing
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| Introduction

* Principle of Well Testing
* Objectives

* Types

 Interpretation
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Principle of well testing

Analyze the OUTPUT of a well on which a known INPUT
sighal has been applied

e INPUT:
Production and Injection Flow Rates

e OUTPUT
Bottom Hole Pressures and Temperatures
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Standard Well Testing

Rate and
Bottom Hole Pressure
vs Time
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http://en.openei.org/wiki/Injectivity_Test

Main Objectives of Well Testing:
Reservoir and Well Description

« Temperature distribution * Reservoir size
e Pressure distribution * Production potential
 Permeability distribution * Well damage (skin)

(horizontal and vertical) - Pressure changes

* Reservoir state (gas/liquid;

« Temperature changes
one/two phase flow)

: " « Composition changes
 Reservoir heterogeneities
(fractures, layering,

changes)
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Types of Tests

« Measurements while
drilling
« Temperature buildup tests
* Pressure buildup tests

« Measurements on well
completion
 Feed zones
e Overall permeability

22/01/2019

 Heating

 Formation temperatures

and pressures

* Production / Injection

tests: Well testing

 Production potential at

surface

« Downhole response

e Interference

Y
V5N
IR
oy B T
Wy
v

RGEO

CAP



Standard production test

e Let well pressure stabilize

 Open to flow; measure pressure decline
Problems:
e Control of constant rate
 Not static as a start

e Shutin and watch pressure Buildup
 Easy achievable constant = zero rate
e Loss of production time

 Long-term test:reservoir boundaries and reservoir size
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Interference testing

» Active well(production / injection well)

e Observation well
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Interference testing

 Time lag In observation well
response
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BOTTOM HOLE PRESSURE (psia)
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Quality control

 Check instrumental response (validation of gauges)
 Check gauge pressures vs wellhead pressures

e Check timings of pressures vs rates
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Interpretation

REAL SYSTEM

* Measure response of S S [/
= P
physical system RESERVOIR

PROPERTIES

e Calculate model
response

e Calibrate model
parameters to obtain
match

Inverse problem:
Gm=d
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Example of

non_u niq ueness Of Dual-porosity model
- (pseudosteady-state transition)

solutions

100

Same data can be fitted with it
different models
! 102 10 10° 10 10 10°
Well near a sealing fault Dual-porosity model Dual-permeability model

(transient transition)

0-2 10~ 100 10 102 108 )72 10 100 10! 102 108 )2 10 100 10° 102 10°




Il Well testing basics

 Models
* Wellbore storage, Skin
 Analysis methods

* Pressure derivative analysis
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Model

A schematic description or representation of something,
especially a system or phenomenon, that accounts for
Its properties and Is used to study Its characteristics

« Mathematical model:
A model In terms of equations
 Mass balance
* Flow
e Energy
 Initial and boundary conditions

22/01/2019
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Analytical vs Numerical models

« Analytical  Numerical

« Mathematical solution to * Non-linear equations (e.g.
the equations two-phase flow)

» Usually obtainable for * Complicated boundary

: ) conditions
simple geometries only

Cost t culat  Heterogeneity
ast 10 CalCtiate e Usually in the form of

 Conceptually tractable “discrete analogues”

* Finite differences
 Finite elements
 Discrete elements

22/01/2019

’.F.‘.GEO

i s Bis T
7 cnp
N\



Model ingredients

e Phases « Geometry
. Single phase * Radial
e 3D

 Two-phase
e Heterogeneous

 Hydraulic regime
o Steady-state
 Pseudo-steady-state
 Transient

 Nature of fluids
o« Compressibility
 Viscosity
« Specific enthalpy

@R GEO
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Demonstration of hydraulic flow
regime

e Steady-state: No changes
with time

 Pseudo-steady-state:
Changes with time
Independent of position

e Transient: Full temporal-
spatial solution
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Basic Equations

e Darcy « Continuity  Diffusivity equation
k . o % (pk(VP \7))
— CO— =V | — — Z
V=—E(VP—sz) a(QO,D) ==V - (pv) PP 5 U g
: e Radiall
. * Radially symme%:ric
* Radially symmetric
symmetric
0 . P 10 (pk aP
. q  kdpP at(q’p)_ rar(r pv) (pCpE:;6r<ur6r>
v _— e = — —
A udr
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Steady-State Solution

» Applicable for constant-pressure boundary condition

(open reservoir)
10 (pk OP
— r =0
ror\ u Or
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Constant Terminal Rate Solution

amkh '\ k 4t) "  4nT \T 4t
Character of curve determined by
 Transmissivity (Mobility-thickness) T = kh/u
e Storativity S = ¢ch

Well testing: Determine S and T from observation of
pressure development

ClU T S r?
AP=P—p, = ——F E((pﬂ )= d E( )



Presenter
Presentation Notes
Explain that time and position dependence are determined by T and S. Having infinite reservoir will only give T. S can be obtained when there are boundaries…


Exercise

e Determine
T =kh/u
S = @ch

e T = 275°C
e Viscosity 0.1 mPa.s
* Flow rate 0.084m3/s

* 1 bar corresponding
to 9.8 m water level
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Superposition

e Linear equation allow

superposition of solutions
0(P; + P,)
pcp 3t

10 (pk 0(P; + Pz))

T ror ur ar

e Sealing fault: Employ
“Image well” to address
boundary condition
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For finite production/injection time

 Two periods
e Opposite sign

 Delayed start

e Superposition of
partial solutions

o After shutin:
e AP = m(log,(t + At) —

:i':nnﬂnunw Flow

* P - P=m log (teat)
. - mlogat
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Closed reservolir

e Late time for a closed reservoir: Semi-steady state
solution — pressure time derivative constant and
homogeneous:

dp _ q

ot  cnrlho

_an lnr_e_l
Pe = Pwf = 5 0h 2

 But the global increase in pressure starts after pressure
disturbance has reached the reservoir boundaries

22/01/2019
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Wellbore Storage

Asr<Awh

22/01/2019

qwh

Wellhead flowrate

Sandface
flowrate

e Drawdown test

« Effect of fluid
expansion in the
wellbore

* In geothermal:
Additional effect
of flashing and
condensation

'.'1?.‘.650
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Wellbore Storage

* Wellbore storage coefficient containing fluid

compressibility and wellbore volume:

A\
C:E:CVW

 With dimensionless wellbore storage coefficient:
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SKin

 Damaged zone In
vicinity of wellbore

o, __Ar e
Pw = Pe = 5 kh T,
Pw = Pw — Aps
qu .
=p,———(In=+S
Pe anh(nrw+ )
qu [k r' §$>0
Aps = —1|In—
: anh(k’ )“rw
. qu S S<O0
~ 2mkh
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Permeability reduction
(damage)

Permeability increase
(stimulation)
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Skin

e Essentially an additional pressure drop

« Can be mimicked by an “effective wellbore radius”
lnr—f = lnr—e + S

Tw Tw

22/01/2019
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Wellbore conditions

Often not fully penetrating vertical well iIn homogeneous
reservolr...

e Intersecting fracture
e Partial penetration
 Horizontal well

e Slanted well

22/01/2019 a ® & '.'%E‘.GEO

i s Bs T
7 cnp
N\



Classical well test analysis

* Formulate solution for
dimensionless variables —
log-log type curves

2mtkh
P, = — AP
qu
.kt
Y gucr?

 Fit type curves to
measurement by shifting

e Calculate T and S from
shifts

01018 & Vo @ m~ ,,gg;_‘_ GEO
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Presenter
Presentation Notes
Make clear that shifting curves in log-log plots is equivalent to multiplication with factor.


Exercise

e Type curve matching exercise (##SuUutopo##)

e Can this be done with Sapphire?
 Is it possible to obtain storage???

.,'.'1?.‘.650
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Semi-log analysis

For long times Slope m
AP —%bl @ _ 2.303q _ 2.303W
1 At 2oed U 4Ttm 4Ttmp
~ —m| 10810 ,LlCT'z
2.303qu Value AP at t
m = kht AP
4mkh ¢pch = 2.25— 10m
Ur
Straight line on semi-log plot
22/01/2019 R ) s 5.'1“- €
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Long times wrt r^2… 
Slope = m. So kh = 2.303 q mu / 4 pi mm



Pressure derivative analysis

 Bourdet (1983) Observations:
 Infinite acting reservoir with radial flow: dP « In At
 Wellbore storage: dP « At
e Late-time closed reservoir: dP « At

e Introduced
dp dp
= dmar - Mtae

* Possible thanks to precise pressure measurements

Ap’

"1?.‘.650
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Type curves

* Pressure response often
difficult to interpret

» Slowly changing between
flow regimes

 Pressure derivative gives
typical response for
different regimes

22/01/2019

Log-Log Plot
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Type curves to identify Wellbore

storage and Skin

10 [Pressure Match
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AP and t*AP Pal

Demonstration e I-
/

 Wellbore storage

 Skin | e
 Radial flow
 Reservoir boundary
 Bounding fault

AP, =
(F*AP) = 66,0194 psi
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Exercise

e Use Sapphire with a field
test to identify
permeability, skin,
wellbore storage,
reservoir size...
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Injection

The reverse of production —
but

* Possibly different fluid
phases (chemistry)

e Cooled part of rock

Far-field response is that of
reservoir fluid

e Match near-well behaviour
with effective skin

e Thermal stimulation

22/01/2019

Well Bore .

Cold Injected
Water |

Heated /

Injected Water

(b)
\ Pressure

... Temperature

-
L]

~.. Chemistry

L]

Pressure, Temperature,
Chemistry

Radial Distance, log
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Pressure builldup — Horner

AV
= mloglo(t + At) ~ = ghi-P=mlog (t+4) + .
— mlogqot
t + At _
= m 10810 ; Continuous Flow
* Plot against loglo# =

*P,- P=m log (tat)
5 - m logat
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Horner plot

) qu . t, +At

In

P=P “amkh At

e Extrapolate to y-axis
(At = 0) to obtain
average reservoir
pressure

22/01/2019
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11 Geothermal Well Testing

* Fluid properties
 Temperature transients

« Heterogeneous reservoirs

22/01/2019




Gas flow

dP pk
gocpa= V- IVP

Define pseudo pressure to address non-linearity

P pdP M (¥ PdP
m(P) =f RTf
Pref K
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Two-phase flow

e Standard procedure but

« Compressibility — dependent on steam-water transition
enthalpy

e Density
e Relative permeability
 Viscosity

22/01/2019
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Temperature transients

 To determine the reservoir pressure after drilling-
Induced cooling

e FOor conduction only:

C aT—I(\72T
Pt tar

e Again: Horner plot

5 tp + At
T=T"—mln
JAY
22/01/2019 @ gg@%GEO
Nt ~> w7 CAP




Temperature transients

* Cooling phase: Constant
temperature; not constant
heat flux

e Correction term:

O
o
)
o
=
©
e
©
Q
5
bt

—
W
o

T =Tys + mTpp(tpp)

K
tpp = t, =~ 04-t,(h
- (PtCTTv3> ? p( ")

22/01/2019
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Reservoir heterogeneity

e Dual-porosity reservoir
e Dual-permeability reservoir

« Composite reservoir

22/01/2019



Dual-porosity reservoir

e Reservoir with fissures / fractures
 Flow mainly through fissures
e Storage in mainly in matrix
b = ¢fo + OoVin = Vf + Om
 Model assumption:
Two communicating sub-models
occupying the “same” volume

22/01/2019
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Assumptions

 Matrix blocks are small
compared to reservoir
volume

e Matrix blocks are not
connected

 Matrix blocks are
homogeneous

 Most storage in matrix
blocks

22/01/2019

Storativity ratio

. (CI)VCt)f

- (PVe) s + (Ve m
_ (@Vcer)y

- (¢Vct)f+m

0
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Assumptions

 Matrix block geometries
dependent on number of
fissure plane directions n:
e N=3 Cubes / spheres
« N=2 Cylinders
« n=1 Slabs

e Flow between matrix
blocks and fissures

22/01/2019

Interporosity flow coefficient:
k
A= ar? ?m
Geometry factor a dependent
on characteristic size r,, of

matrix blocks
_n(n+2)
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Presentation Notes
Interporosity flow coefficient describes the difficulty to flow from matrix to fissures. Small value means it is difficult.


Warren & Root model

e Matrix flow with skin

 Pseudo-steady state In
matrix blocks

e Flow from fissures to well

1. Starting with fissure
flow

2. Transition
3. Matrix-dominated

22/01/2019
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So this model assumes uniform pressure in the matrix blocks.


Dual porosity, unrestricted
Interporosity flow

e Transient flow In matrix

blocks
e Flow from fissures to well

1. Starting with
transitional flow

2. Total-system

22/01/2019



Dual-porosity reservoirs

Storativity ratio w Interporosity flow

. Contrast between fissure  coefficient

regime and matrix regime ¢ Defining start of total

e Usually no effect for system flow

unrestricted interporosity
(short-lived fissure flow)
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Interpretation ambiguity

e Similar response from  High wellbore storage +
dual-porosity and sealing negative skin — indication
fault for possible dual-porosity

» Choose based on ASSISARA0LLE
geology; interpreted
parameters; multiple well
responses...

22/01/2019 YR @ ‘gé%%ﬁﬁo




Dual-permeability reservoir

e Layered reservoir
 With or without crossflow

L

| _ s, | mmmm———— kK,
« Commingled production or ! .
not i I I I i
| I
. I | <=
Flow through both layers S, |l — h,, ko, Ky
» Conceptual model with —
possible barrier
22/01/2019 &S Vo . o "EFEEGEO




Conceptual model

 Mobility ratio

k1hy
K =
kihy + kghy |
1
* Storativity ratio St i ek,
" (pcch)q j I I I h K,
(pceh), + (pcih), c R —
- - 1
 Interlayer crossflow coefficient ™ ! E d— hy Ky Kz
e 12 2 —
 kahy +kahy 20 hy | Ry
ké kzl kzz
22/01/2019 YR @ ‘gé%%ﬁﬁo
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This model gives similar type curves as the dual-porosity model, but can be inbetween dual-porosity and homogeneous models. 


Composite reservoirs

e Reservoir consisting of
distinct media

« Radially composite
« Analytical solutions for parts

 Connect through interface
conditions

e Linearly composite

* Analytical solutions using
iImages
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Exercise

e EXercise dual-porosity
well test (Sutopo)

e Exercise interference
testing (Sutopo)

22/01/2019
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